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Abstract

We study the commuting graph on elements of odd prime order in finite
simple groups. The results are used in a forthcoming paper describing the
structure of finite Bruck loops and of Bol loops of exponent 2.

1 Introduction

Let G be a group and X a normal subset of G, that is for all x ∈ X, g ∈ G we
have xg ∈ X. The commuting graph on X is the undirected graph ΓX,G = ΓX
with vertex set X such that two different vertices x and y are adjacent if and
only if [x, y] = 1. The commuting graph of a group is an object which has been
studied quite often to obtain strong results on the group G. We give a short
overview of some major work on or related to commuting graphs. For more
details see the references given below.

Bender noted in his paper on strongly 2-embedded subgroups, [B], the equiv-
alence between the existence of a strongly 2-embedded subgroup and the dis-
connectedness of the commuting graph of involutions.

At about the same time Fischer determined the groups generated by a class
X of 3-transpositions by studying the commuting graph on X [Fi]. Later Stell-
macher classified those groups which are generated by a special class of elements
of order 3 again by examining the related commuting graph [St].

To prove the uniqueness of the sporadic simple group Ly, Aschbacher and
Segev showed that its commuting graph on 3-central elements is simply con-
nected [AS]. In addition, a major breakthrough towards the famous Margulis-
Platonov conjecture has been made by Segev by using the commuting graph on
the whole set G for G a non-trivial finite group [Se].

Finally Bates et al. [BBPR] determined the diameter of the connected com-
muting graphs of a conjugacy class of involutions of G where G is a Coxeter
group and Perkins [Pe] did the same for the affine groups Ãn, see also the related
work [IJ2]. In [AAM] Abdollahi, Akbari and Maimanithe considered the dual
of the commuting graph on G \ Z(G). They conjectured that if these graphs
are isomorphic for two non-abelian finite groups then the groups have the same
order. This conjecture has been checked for some simple groups in [IJ1].

∗This research is part of the project “Transversals in Groups with an application to loops”
GZ: BA 2200/2-2 funded by the DFG
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In this paper we study the connected components of the commuting graph
ΓO on the set O of odd prime order elements of a finite simple group G and of
some of its subgraphs. We use our main results in [S] and [BS] to characterize
the finite Bruck loops of 2-power exponent. We also consider our theorems to
be of independent interest.

Suppose that X is a normal subset of a group G. Then G acts on ΓX by
conjugation. We say that a connected component of ΓX is big if it is invariant
under this action. If a connected component of ΓX is not big then we say that
it is small. In our first theorem we determine all the finite simple groups whose
commuting graph ΓO has a big connected component.

Theorem 1 Let G be a finite simple group, then either ΓO has a big connected
component or G is one of the following groups:

(a) A1(q), 2B2(q), 2G2(q) (for any q),

(b) 2A2(q) for q odd with q+1
(q+1,3) a 2-power or

(c) M11, J1, A2(4).

Conversely, the groups in (a), (b) and (c) do not have big connected components
in ΓO.

For ρ a subset of π(G), where π(G) is the set of primes dividing the order
of G, we denote by Eρ(G) := {x ∈ G : o(x) ∈ ρ} the set of elements in G whose
order is in ρ. For simplicity we abbreviate ΓEρ(G) by Γρ for ρ a subset of π(G).
Thus for p a prime, Γp is the commuting graph on the set of elements of order
p of G.

For x ∈ O let Cx be the connected component of ΓO containing x. If Cx is
big, then it follows from 3.3 below that Γp is a subgraph of Cx where p is the
order of x. It is reasonable to ask whether or not Γp is already connected. For
S a subgraph of ΓX , let π(S) be the set of orders of the elements in S. So π(S)
is a subset of π(G).

Theorem 2 Let G be a finite simple group. If ΓO has a big connected compo-
nent C, then there is a prime p in π(C) such that Γp is connected.

As a consequence we obtain:

Corollary 1.1 Let G be a finite group and suppose that there is a big connected
component C of ΓO. Suppose that the Sylow-p-subgroups are cyclic for all the
primes p in π(C). Then G is not simple.

A connected component Cx is big if and only if it contains the full conjugacy
class xG, see 3.1(c). We say that a conjugacy class xG is connected if the
commuting graph on xG is connected. In the next theorem we provide examples
of groups having a connected conjugacy class. More precisely, we present all the
alternating groups and groups of Lie type in even characteristic which possess
such an element x of odd prime order. We will need these results to prove
Theorem 5.
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Theorem 3 In Table 1 and below that table we list the simple groups G which
are alternating or groups of Lie type in even characteristic and some subsets ω
of π(G) such that the conjugacy class xG is connected for some element x in G
of order r, r ∈ ω, with E(CG(x))/Z(E(CG(x))) as given in the third column.
In the first column of the table we list G, in the second ω is given and in the
last further conditions which have to be satisfied.

Table 1

G ω E(CG(x))/Z(E(CG(x))) conditions
Alt(n), n ≥ 8 {3} Altn−3

A2(q) π( q−1
(q−1,3) ) A1(q) q > 4

A3(q) π(q − 1) A2(q) q > 2
An(q), n ≥ 4 π(q2 − 1) An−2(q)
2A2(q) π( q+1

(q+1,3) ) A1(q) q > 2
2A3(q) π(q + 1) 2A2(q)
2An(q), n ≥ 4 π(q2 − 1) 2An−2(q)
Cn(q), n ≥ 3 π(q2 − 1) Cn−1(q)
Dn(q), n ≥ 4 π(q − 1) Dn−1(q) q > 2
Dn(q), n ≥ 4 π(q + 1) 2Dn−1(q)
2Dn(q), n ≥ 4 π(q − 1) Dn−1(q) q > 2
2Dn(q), n ≥ 4 π(q + 1) 2Dn−1(q)
3D4(q) π(q2 − 1) A1(q3) q > 2
2F4(q) π(q2 + 1) 2B2(q) q > 2
F4(q) π(q2 − 1) C3(q)
E6(q) π(q2 − 1) A5(q)
2E6(q) π(q2 − 1) 2A5(q)
E7(q) π(q2 − 1) D6(q)
E8(q) π(q2 − 1) E7(q)
G2(q) {3} A1(4) q = 4

π(q2 − 1) A1(q) q > 4

In the groups 3D4(2) and 2F4(2)′ the set of elements of type 3B or 3A (in
the notation of [Atlas]) with centralisers isomorphic to 31+2

+
·2S4 or 31+2

+ : 4,
respectively, are connected conjugacy classes.

There is always at most one big connected component in ΓO beside in the
case of O′N . This yields a new characterisation of the sporadic group O′N :

Theorem 4 Let G be a finite simple group, such that ΓO has a big connected
component. Then either G has a unique big connected component or G = O′N
and Γ{3,5} and Γ7 are the two big connected components.

Last not least we determine for all the finite simple groups all the elements
which are contained in a small connected component of ΓO. This information
will also be needed to prove Theorem 4.

In Table 3 and also later we use the following notation: Let q be a power of
a prime p and r 6= p another prime. Set

dq(r) := min{i ∈ N : r | qi − 1}.

So dq(r) is the order of q modulo r.
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Theorem 5 Let G be a finite simple group. Suppose that there is a big con-
nected component in ΓO and let x be an element of G of odd prime order r. If
x is not contained in a big connected component of ΓO, then G and r are as
in Tables 2-4. Conversely if these conditions are satisfied, then x is in a small
connected component.

Table 2

G r
M12 r ∈ {5, 11}
M22 r ∈ {5, 7, 11}
J2 r = 7
M23 r ∈ {7, 11, 23}
HS r ∈ {7, 11}
J3 r ∈ {17, 19}
M24 r ∈ {11, 23}
McL r ∈ {7, 11}
He r = 17
Ru r ∈ {7, 13, 29}
Suz r ∈ {11, 13}
O′N r ∈ {11, 19, 31}
Co3 r ∈ {11, 23}
Co2 r ∈ {7, 11, 23}
Fi22 r ∈ {11, 13}
HN r ∈ {11, 19}
Ly r ∈ {31, 37, 67}
Th r ∈ {19, 31}
Fi23 r ∈ {11, 17, 23}
Co1 r = 23
J4 r ∈ {23, 29, 31, 37, 43}
Fi′24 r ∈ {17, 23, 29}
B r ∈ {17, 19, 23, 31, 47}
M r ∈ {41, 47, 59, 71}

Table 3

G condition on G r
Alt(n) n− t a prime , t ∈ {0, 1, 2} n− t
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Table 4

G condition on G dq(r)
A2(q) π( q−1

(q−1,3) ) ⊆ {2}, q odd 1, 2, 3
3

A3(q) π(q − 1) ⊆ {2} 3
π(q + 1) ⊆ {2} 4

An(q), n ≥ 4 q = 3, n = 4 4
n a prime, π( q−1

(q−1,n+1) ) ⊆ {2} n

n+ 1 a prime n+ 1
2A2(q) π( q+1

(q+1,3) ) 6⊆ {2} 6
2A3(q) π(q − 1) ⊆ {2} 4

π(q + 1) ⊆ {2} 6
2An(q), n ≥ 4 q ∈ {3, 9}, n = 4 4

n a prime , π( q+1
(q+1,n+1) ) ⊆ {2} 2n

n+ 1 a prime 2n+ 2
Bn(q), n ≥ 3, q odd n a prime, π(q − 1) ⊆ {2} n

π(n) ⊆ {2} 2n
n a prime, π(q + 1) ⊆ {2} 2n

C2(q) q 6= 2 4
Cn(q), n ≥ 3 n a prime, π(q − 1) ⊆ {2} n

π(n) ⊆ {2} 2n
n a prime, π(q + 1) ⊆ {2} 2n

Dn(q), n ≥ 4 n− 1 a prime, π(q − 1) ⊆ {2} n− 1
n a prime, π(q − 1) ⊆ {2} n
n− 1 a prime, π(q + 1) ⊆ {2} 2n− 2
π(n− 1) ⊆ {2}, π(q + 1) ⊆ {2} 2n− 2

2Dn(q), n ≥ 4 n− 1 a prime, q = 3 n− 1, 2n− 2
π(n− 1) ⊆ {2}, π(q − 1) ⊆ {2} 2n− 2
n a prime, π(q + 1) ⊆ {2} 2n
π(n) ⊆ {2} 2n

3D4(q) 12
F4(q) 8, 12
2F4(q)′ q = 2 4

12
E6(q) q ∈ {3, 7} 8

9
2E6(q) q ∈ {2, 3, 5} 8

q = 2 12
18

E7(q) π(q − 1) ⊆ {2} 7, 9
π(q + 1) ⊆ {2} 14, 18

E8(q) 15, 24, 30
5 - q2 + 1 20

G2(q), q 6= 2 3 - q − 1 3
3 - q + 1 6

These tables imply the following interesting fact:
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Corollary 1.2 Let G be a finite simple group and suppose ΓO has a big con-
nected component. If x is an element of G of prime order r which is in a small
connected component, then O2(CG(x)) is abelian and the Sylow-r-subgroups of
G are either cyclic or G ∼= 2F4(2)′ and r = 5.

The proof of our results requires a close study of the simple groups of Lie
type. We use the following sources for information about their maximal sub-
groups: [Ca1], [Bou] for the general theory, [KL] for classical groups, [LSS]
and [CLSS] for exceptional groups of Lie type. Furthermore, the papers [Coo],
[K3D4] and [M] were useful.

The structure of the paper is as follows: In Section 2 we provide some facts
from number theory and Section 3 contains general results about commuting
graphs and big connected components. In Section 4 we prove Theorems 1 and
2 at the same time. Theorem 3 is shown in Section 5 and Theorems 5 and 4
in Section 6. We study separately the sporadics, alternating and groups of Lie
type. If G is a group of Lie type, then we show that the elements in the small
components are those elements of G which are not contained in certain maximal
subgroups of G. These elements are then determined.

We use the classification of the finite simple groups, but we wonder whether
there is a proof, which does not use the full classification. This may be compli-
cated as for instance, if G = PSL2(8)×Sz(8), then ΓO is connected and all the
Sylow subgroups of G of odd order are cyclic.

2 Facts from number theory

Let q be a power of the prime p and let r 6= p be another prime. By Lagrange‘s
Theorem dq(r)|r − 1. Recall Zsigmondy’s famous theorem:

Theorem 6 Let n be a positive integer. There is either an odd prime s with
dp(s) = n or one of the following cases holds.

(a) p is a Mersenne prime, i.e. p = 2m − 1 for some prime m and n = 2.

(b) p is a Fermat prime, i.e. p = 22m + 1 for some integer m and n = 1.

(c) p = 2 and n = 1 or n = 6

Let Φn(x) ∈ Z[x] be the n-th cyclotomic polynomial. Then the following
lemmata are consequences of Theorem 6.

Lemma 2.1 Let p be a prime and n an integer. The following holds.

(a) If Φn(p) is a power of 2, then n = 1 and p is 2 or a Fermat prime or
n = 2 and p is a Mersenne prime.

(b) If Φn(p) is a power of 3, then p = 2 and n ∈ {1, 2, 6}.

(c) If Φn(p) is a power of 3 times a power of 5, then p = 2 and n ∈ {1, 2, 4, 6}.

Proof: If n > 2 and (p, n) 6= (2, 6) by Theorem 6 there exists a prime r
dividing Φn(p), which does not divide Φm(p) for m < n. Since 3 divides
(p − 1)p(p + 1) = Φ1(p)pΦ2(p) we have r > 3. So in the first two cases the

6



question reduces to those primes p, for which p− 1 (in case n = 1) or p+ 1 (in
case n = 2) is a 2-power or a 3-power. For the third case observe, that n | r−1,
so n ∈ {1, 2, 4} in this case and we have to determine those primes p, for which
one of p − 1, p + 1 or p2 + 1 is a 3-power times a 5-power. Since in particular
Φn(p) is odd, p = 2. The statement is immediate. 2

Lemma 2.2 Let q be a prime power. The following holds.

(a) If q − 1 is a 2-power, then q = 2, q = 9 or q is a Fermat prime.

(b) If q + 1 is a 2-power, then q is a Mersenne prime.

(c) If q2 − 1 is a 2-power, then q = 3.

(d) If q2 − 1 is a 2-power times a 3-power, then q ∈ {2, 3, 5, 7, 17}.

(e) If q2 − 1 is a 3-power times a 5-power, then q ∈ {2, 4}.

Proof: Let q = pe. Remember the formulas

(pe)n − 1 =
∏
d|en

Φd(p) and (pe)n + 1 =
∏
d|2en
d-en

Φd(p).

If n = 1, then we get e ≤ 2 in (i) and (ii) by 2.1. If n = 2, then we get (iii)
again by 2.1.

Let q2− 1 = 2a3b. Since 3 divides exactly one of q− 1, q, q+ 1, we get q = 2
or q is a Mersenne or Fermat prime by (i) and (ii).

If p = 2r − 1 is a Mersenne prime, then p − 1 = 2(2r−1 − 1) is a 2-power
times a 3-power iff r ≤ 2 by the formula above and by 2.1. If p = 2m + 1 is a
Fermat primes p = 2m + 1, then p + 1 = 2(2m−1 + 1) and we get m ≤ 4. Also
(v) is a consequence of the formula above and 2.1. 2

3 Commuting graphs and big connected compo-
nents

In the following let G be a group and X a non-empty normal subset of G. We
begin with some basic but powerful observations.

Lemma 3.1 Let X be a normal subset of the group G and ΓX the commuting
graph on X.

(a) G acts by conjugation as a group of automorphisms on ΓX .

(b) Let g ∈ G. Then the vertices xg and x in ΓX are connected or equal if
and only if g ∈ Hx.

(c) A connected component of ΓX is big if and only if it contains a conjugacy
class xG.

The following lemma is helpful as it allows to go from G to a central extension
of G.

Lemma 3.2 Let G := G/Z(G). If x and y are elements in X which are con-
nected in ΓX , then x, y are connected in ΓX .
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3.1 A nice property of big connected components

Lemma 3.3 Suppose C is a big connected component in ΓY where Y = Eρ(G)
for some ρ ⊆ π(G). If r is in π(C), then C contains all the elements of order
r.

Proof: Let y ∈ Y be any element of order r different from x. We show, that x
and y are connected in ΓY . Let R ∈ Sylr(G) with x ∈ R. As Er(G) ⊆ Y , there
is some z in Z(R) 6= 1. Clearly, z is connected to x, likewise y is connected to a
conjugate of z. By 3.1(c) z and this conjugate are connected, which shows the
assertion. 2

Corollary 3.4 Let X be a normal subset of O such that ΓX is connected. Then
there is a subset ρ ⊆ π(G)− {2} such that Eρ(G) = ΓX .

Thus the big connected components of ΓO are among the subsets Eρ(G).
Notice, that the subset ρ for a big connected component C of Γπ can be

determined from the sizes of centralisers only, once the order r of a single element
x ∈ C is known. For this we simply define a graph on the set π by connecting
all primes p1 and p2, such that p2 divides the size of a centraliser of an element
of order p1. The connected component of the prime r in this graph is the subset
ρ in question.

3.2 The graph Γp.

In order to use this method, we have to establish the existence of big connected
components. A special case is the connectedness of Γp. Following Bender [B], we
show, that connectedness of Γp is equivalent to the fact that G has no strongly
p-embedded subgroup. First we give criteria for the connectedness of Γp.

Lemma 3.5 If one of the following conditions holds then Γp is connected.

(a) Op(G) 6= 1.

(b) G = 〈NG(Y ) : Y ≤ P, Y 6= 1〉 with P ∈ Sylp(G).

(c) There exists a prime p and subgroups A,B ≤ G, such that G = 〈A,B〉, A∩
B contains elements of order p and both Γp(A) and Γp(B) are connected.

Proof: (a) Choose x ∈ Ω1(Z(Op(G))). Then also xg ∈ Ω1(Z(Op(G))) for
g ∈ G. So [x, xg] = 1 and g ∈ Hx by 3.1.

(b) Let x ∈ Ω1(Z(P )), o(x) = p. Then P ≤ Hx. For 1 6= Y ≤ P we may
choose 1 6= y ∈ Y with o(y) = p. Then NG(Y ) ≤ Hy by 3.5. As Hx = Hy,
Hx = 〈NG(Y ) : Y ≤ P, Y 6= 1〉 = G. Therefore all conjugates of x in G are
connected, so Γp is connected.

(c) Choose x ∈ A∩B, o(x) = p. Consider Hx in Γp. As Γp(A) is connected,
A ≤ Hx. As Γp(B) is connected, B ≤ Hx. Therefore G = 〈A,B〉 ≤ Hx, so Γx
is connected. 2

Next we show that (b) characterises the connected Γp. Recall that a sub-
group U ≤ G is strongly p-embedded, if U 6= G, p ∈ π(U) and p 6∈ π(U ∩ Ug)
for all g ∈ G − U , cf. [B]. The equivalence of (a) and (b) is already shown by
Bender for p = 2 as well as essentially the equivalence of (b) and (c), see [B].
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Lemma 3.6 Let p ∈ π(G). The following statements are equivalent:

(a) The graph Γp is connected.

(b) G has no strongly p-embedded subgroup.

(c) G = 〈NG(Y ) : 1 6= Y ≤ P 〉 for some P ∈ Sylp(G).

Proof: Suppose Γp is connected, but there exists a strongly p-embedded sub-
group U . Let x ∈ U, o(x) = p. As U is strongly p-embedded, U is the stabiliser
of a unique point in the action of G on the U -cosets and this is the unique fixed
point of x. Therefore CG(x) fixes this unique point, so CG(y) ≤ U for every
y ∈ U of order p. This gives a contradiction to Γp connected, as G−U contains
elements of order p.

Suppose U := 〈NG(Y ) : 1 6= Y ≤ P 〉 6= G, butG has no strongly p-embedded
subgroup. Let g ∈ G − U with |U ∩ Ug|p maximal and X ∈ Sylp(U ∩ Ug). If
X = 1, then U is strongly p-embedded, contrary to the assumption.

If X ∈ Sylp(G), we find some u ∈ U with Xu = P , so U = 〈NG(Y ) :
1 6= Y ≤ X〉. Likewise we find some v ∈ Ug with Xv = P g. Then also
Ug = 〈NG(Y ) : 1 6= Y ≤ X〉, so U = Ug. Then g ∈ NG(U). As NG(P ) ≤ U ,
NG(U) = U by Frattini, so g ∈ U , a contradiction.

So 1 < |X| < |G|p. Let A,B ∈ Sylp(NG(X)) with A ≤ U and B ≤ Ug. As
|A| > |X|, B 6≤ U . We can choose a Q ∈ Sylp(U) with X ≤ Q. There exists
a w ∈ U with Pw = Q, so U = 〈NG(Y ) : 1 6= Y ≤ Q〉. Then NG(X) ≤ U
contradicts B 6≤ U .

If G = 〈NG(Y ) : 1 6= Y ≤ P 〉, then Γp is connected by 3.5. 2

Moreover, we get the following

Corollary 3.7 Let p ∈ π(G). If Γp is connected, then Sylow-p-subgroups of G
are noncyclic or Op(G) 6= 1.

Proof: As Γp is connected, G = 〈NG(Y ) : 1 6= Y ≤ P 〉. If Sylow-p-subgroups
are cyclic, all those subgroups NG(Y ) are contained in the subgroup NG(Y1) for
Y1 = Ω1(P ), so Op(G) contains Ω1(P ). 2

3.3 The graph ΓxG.

In this paper we also study the stronger condition that xg is connected for some
x ∈ G. In this section we present some helpful criterions. Let X := xG.

Lemma 3.8 Let X = xG with x ∈ O. Suppose U is a subgroup of G such that
U = AB for two commuting subgroups A and B of U with x ∈ A and such that
there is a g ∈ G with Ag ≤ B. Then Hx ≥ 〈U, g〉 > U .

Proof: It follows that B ≤ CU (x) is contained in Hx. As there is g ∈ G with
Ag ≤ B and as [x, xg] = 1, we also get that A ≤ CU (xg) is contained in Hx. By
3.1(b) g is in Hx as well. As U ≤ NG(A), but g 6∈ NG(A), we have 〈U, g〉 > U . 2

We can strengthen our criterion on Γp:
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Lemma 3.9 Let x ∈ G be an element of order p. If G = 〈NG(A) : A ≤ G, x ∈
A,A′ = 1〉, then xG is connected.

Proof: Let Γ = ΓX for X = xG. If x ∈ A with A′ = 1, then NG(A) ≤ Hx. So
G ≤ Hx and ΓX is connected. 2

We end this section with a criterion for the nonexistence of big connected
components.

Lemma 3.10 Let C be a big connected component of ΓX . Then either some
x ∈ C exists such that CG(x) is not abelian or 〈C〉 ≤ F (G).

Proof: Suppose CG(x) is abelian for every x ∈ C. Let x, y, z ∈ C with
[x, y] = 1 = [y, z]. As CG(y) is abelian and x, z ∈ CG(y), [x, z] = 1. As
C is a connected component, any two elements of C commute, so A := 〈C〉 is
abelian. As C is a big connected component, A is G-invariant and A ≤ F (G). 2

Notice, that groups with abelian centralisers were considered already by
Weisner [W] and Suzuki [Sz1]. We wonder, whether it is possible to classify
those finite simple groups without big connected component in ΓO without
using the classification.

4 Proofs of Theorems 1 and 2

In this section we show that if G is a simple group not listed in Theorem 1, then
ΓO has at least one big connected component. At the same time we show that
there is a prime p such that Γp is connected.

Let p divide |G|. By 3.6 Γp is connected if and only if G = 〈NG(Y ) : 1 6=
Y ≤ P 〉 for each Sylow p subgroup P of G. Moreover, by 3.7 if P is cyclic,
then Γp is not connected. Now assume that the p-rank mp(P ) of P is at least
2. Then Theorem (7.6.1) of [GLS, Vol. III] gives an answer:

Theorem 7 [GLS, Vol. III,(7.6.1)] Let G be a finite simple group (K-group in
the theorem) and p a prime such that for P ∈ Sylp(G) it holds mp(P ) ≥ 2 and
〈NG(Y ) : 1 6= Y ≤ P 〉 < P . Then p and G are one of the following:

(1) p is arbitrary and G ∈ Lie(p) with G ∼= A1(pa),2A2(pa),2B2(pa), 2G2(pa)

(2) p > 2 and G ∼= A2p

(3) p = 3 and G ∼= A2(4) or M11

(4) p = 5 and G ∼= 2F4(2),Mc or Fi22.

(5) p = 11 and G ∼= J4.

This theorem classifies the finite simple groups of p-rank at least 2 such that
Γp is not connected. If G has a Sylow p-subgroup of p-rank at least 2 and the
pair (p,G) is not listed in the theorem, then Γp is connected. This shows that
if G ∼= A2p, p > 3, 2F4(2),Mc, F i22, J4 (i.e. if (2), (4) or (5) holds), then Γp is
connected for some prime p. We study (1) and (3) case by case.
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G ∼= A1(pa), 2B2(pa). We use Dixon’s Theorem for A1(pa) and [Sz] in case of
2B2(pa) for the list of maximal subgroups. Then 3.10 shows, that G has no big
connected component.

G ∼= 2A2(pa). There is a subgroup in G isomorphic to ((Zq+1 × Zq+1)/(q +
1, 3)) : Sym(3), see [K]. If (q + 1)/(q + 1, 3) is not a 2-power, then there is
an element x in G of prime order r such that r divides (q + 1)/(q + 1, 3). By
Theorem 7 Γr is connected.

If (q+1)/(q+1, 3) is a 2-power, then all semisimple elements have an abelian
centraliser, see [K]. By 3.10 ΓO has no big connected component.

G ∼= 2G2(q), q = 3a. The case q = 3 has been treated as A1(8) above. We
use the list of maximal subgroups in [K2G2]. In particular as centralisers of
semisimple elements are reductive, centralisers of elements of odd prime order
in G are abelian 3′-groups. Thus by 3.10 the commuting graph on the set of
prime elements of order π(G)\{2, 3} is not connected. Moreover, it follows that
centralisers of elements of order 3 are {2, 3}-groups. This shows that ΓO has a
big connected component if and only if Γ3 is connected. As by Theorem 7 Γ3 is
not connected, the assertion holds for G ∼= 2G2(q).

G ∼= A2(4). According to [Atlas, p. 24] all the centralisers of elements of odd
prime order of G are abelian. Therefore, 3.10 implies the assertion.

G ∼= M11. By [Atlas, p. 18] the centralisers of elements of odd prime order p,
p 6= 3, of G are of order p. Therefore, the argumentation is here as in the case
G ∼=2 G2(q).

This shows Theorem 1 for all the finite simple groups which possess a non-cyclic
Sylow subgroup for some odd prime. Thus we do need to collect all the finite
simple groups whose odd order Sylow subgroups are cyclic.

Lemma 4.1 Let G be a finite simple group such that all the Sylow p-subgroups
of G are cyclic for every odd prime divisor p of |G|. Then G is one of the
following:

A1(p), A1(2n), 2B2(2n), A2(2) or J1.

Proof: If G is a sporadic group, then the assertion follows from Table 5 and the
fact that M11 contains a subgroup isomorphic to Alt(6). If G is alternating,
then clearly G = Alt(5).

So let G be a group of Lie type in characteristic p. If the rank d of G is
bigger than 2, then a group isomorphic to A1(q)×A1(q) is involved in G. Hence
d is at most 2.

Let d = 1. If G is not a twisted group, then G ∼= A1(p) or A1(2n). If G
is a twisted group, then every Sylow p-subgroup of G is not abelian, see [Ca1,
13.6.4]. Therefore, p = 2. Considering the structure of the maximal tori of G,
we get G ∼= 2B2(2n).

If d = 2. Then, again by the maximal tori of G, it is not a twisted group
and G ∼= A2(2). 2

We already showed above that all these groups, notice A2(2) ∼= A1(7), do
not contain a big connected component. Moreover, for these groups Γp is never
connected,by 3.7. This proves Theorems 1 and 2.
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5 The Proof of Theorem 3

The strategy of the proof is to present an element x of prime order r such that
r is in ω and such that there are conjugates xi in CG(x) so that

(a) E(CG(x))/Z(E(CG(x))) is as given Table 1,

(b) the subgroups CG(x) and CG(xi) generate G.

We require property (b), as then G = 〈CG(x), CG(xi)〉 ≤ Hx.
If G ∼= Alt(n), n ≥ 8, then given two 3-cycles, there is a 3-cycle which

commutes with both 3-cycles. Hence Theorem 3 holds in that case.

So let G be a group of Lie type in even characteristic q. In the following we
use the notation introduced in [Ca1]. In particular we use the notation for
the root systems Φ for the Lie type groups as given in 3.6 of [Ca1]. We also
denote the generators of the group by xs(t), with s ∈ Φ and t ∈ GF(q), and set
Xs := 〈xs(t) : t ∈ GF(q)〉. Moreover, we use the elements hs(t) of the diagonal
subgroup H of G, see [Ca1].

Case I G not a twisted group. Let u be the highest root in Φ, see for instance
[Ca1, 2.2.6] or [Bou]. In [Bou] the extended Dynkin diagram, which is the
Dynkin diagram extended by the node −u such that two nodes are connected if
and only if the corresponding roots are not perpendicular, of the different types
are given.

In the following assume G 6∼= Dn(q) and if G ∼= An(q), then n ≥ 4. Let
H := 〈Xu, X−u〉 ∼= SL2(q). Then it follows that DH := 〈Xs, X−s : s is not
connected with −u in the extended Dynkin diagram 〉 is contained in CG(H).

Now let x be an element in H of order r where r divides q2−1 (if G ∼= G2(q),
then assume that r divides (q − 1)), then it follows from the respective root
system that E(CG(x))/Z(E(CG(x))) is in the respective case as given in Table
1. Therefore notice if G is not of type G2, then the subgroup DH of CG(H) is
immediatly seen to be normal in CG(H). Set C := CG(x). The case G ∼= G2(q)
and r | (q + 1) will be treated a bit differently, see below.

It remains to find conjugates xi of x such that the subgroups CG(x), CG(xi)
generate G. As the Weyl group is transitive on all the roots in Φ which are of
the same length, Xu is conjugate to all the Xs with s a root of the same length
as u. Now we consider case by case.

G ∼= An(q). As n ≥ 4, there are subgroups 〈Xs, X−s〉 in C and elements x1, x2

in C which are conjugate to x such that every Xs either commutes with x, x1

or x2. This shows that G is generated by the centralisers CG(x), CG(x1) and
CG(x2) and therefore xG is connected.

G ∼= Cn(q), F4(q), Em(q),m = 6, 7, 8. The argumentation is precisely as in the
case G ∼= An(q).

G ∼= G2(q). As G2(2)′ ∼= 2A2(3) by Theorem 1, G has no big connected compo-
nent and we assume q > 2.

Let q > 4. Let the Dynkin diagram of type G2 be labelled with the short root
a and the long root b as in [Ca1] . Then u = 3a+2b and CG(H) = 〈Xa, X−a〉 ≤
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X := 〈Xu, X−u〉 × 〈Xa, X−a〉 ∼= SL2(q) × SL2(q), see [Coo]. Moreover, notice
that L := 〈Xs, X−s | s a long root 〉 ≤ G is isomorphic to SL3(q).

If r | q − 1 or r | q + 1, then x is contained in a maximal torus T ∼= (q − 1)2

of L or in T ∼= (q + 1)2 of a subgroup M ∼= SU3(q).2 of G, see [Coo]. As T is
abelian CL(T ) ∼= (q − 1)2 : Sym(3) and NM (T ) ∼= (q + 1)2 : D12 are contained
in Hx, respectively. As CG(H) is neither contained in L nor in M (there is a
long root element in M , see [Coo, 3.1], so M contains without loss of generality
Xu. As M is a rank one group, Xa is not contained in M but in Hx. This shows
that Hx = G in both cases, see [Coo, (2.3)].

Finally let q = 4. Due to the J2-maximal subgroup, we had to perform
computer calculations. We calculated in MAGMA, using the 6-dimensional
representation of G over GF(4), that G has a connected conjugacy class of
elements of order 3 with the given centraliser structure. There is no connected
conjugacy class of elements of order 5, though Γ5 is connected.

Now we still need to consider the linear groups of small rank and the orthogonal
groups. Here the argumentation is different. For the orthogonal groups we need
a bigger centraliser than we would get using the methods above.
G ∼= A2(q), A3(q). Let G ∼= A2(q), q ≥ 8 and set

x := hr1(t)hr2(t2) and x2 := hr1(t2)hr2(t)

with t an element of order r in GF(q). Then x and x2 are conjugate in G
and [x, x2] = 1. Moreover, Xr1 and Xr2 is contained in CG(x) and CG(x2),
respectively. Hence, G = 〈Xr1 , Xr2〉 ≤ Hx which implies the assertion.

Let G ∼= A3(q). Set

x := hr1(t)hr2(t2)hr3(t3) and x2 := hr1(t3)hr2(t2)hr3(t)

with t an element of order r in GF(q). Again x and x2 are conjugate in G
and [x, x2] = 1. As [Xri , x] = 1 with i ≤ 2 and [Xrj , x2] = 1 with j > 1, the
assertion follows.

G ∼= Dε
n(q), ε ∈ {+,−} with D+

n = Dn(q) and D−n = 2Dn(q). By [KL] there
exist maximal subgroups Uε+ of type O+

2 (q) ⊥ Oε2n−2(q) and Uε− of type O−2 (q) ⊥
O−ε2n−2(q) in Ωε(q), provided q > 2 in case Uε+. For q = 2 we exclude the cases
Uε+, as then q − 1 = 1.

Let Aε+ ∼= Zq−1, B
ε
+
∼= Ωε2n−2(q) be normal subgroups of Uε+ and Aε−

∼=
Zq+1, B

ε
−
∼= Ω−ε2n−2(q) be normal subgroups of Uε−. From the action of G on its

natural module we conclude, that in any case some gε1ε2 with exist, such that
(Uε1ε2 , A

ε1
ε2 , B

ε1
ε2 ,Endgε1ε2 ) satisfy the conditions of 3.8 for x any element of order

r, r ∈ π(q − (ε21)). As Uε1ε2 is a maximal subgroup of G, ΓX is connected for
X = xG.

Case II G is a twisted group. Let T = L(qi) be a Chevalley group over GF(q),
q a power of the prime p, and G = iL(qi) the twisted group. Assume first
that all the roots in Φ of the untwisted group T are of the same length. Let
g be the graph automorphism of T which is related to the symmetry ρ of the
diagram defining G and let σ = gf , f a field automorphism of T of order i.
Then G = 〈CU (σ), CV (σ)〉 where U and V are the opposite Sylow p-subgroups
U = 〈Xs | s ∈ Φ+〉 and V = 〈Xs | s ∈ Φ−〉.
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Let τ be the isometry of the vector space spanned by Φ which extends ρ.
Then τ permutes the fundamental system Π and acts therefore on Φ+. Hence,
the highest root u of Φ is fixed by τ . Moreover, by [Ca1, 12.2.3] g(xs(t)) =
xτ(s)(γst) with γs = ±1. As q is a power of 2, we have γs = 1 for all s ∈ Φ.

In particular, σ(Xs) = Xτ(s) for all s in Φ and σ(xu(t)) = xu(t) for all
t ∈ GF(q). Hence H := 〈Xu(t1), X−u(t2) | t1, t2 ∈ GF(q)〉 ∼= SL2(q) is contained
in G.

Assume that n ≥ 3 in case T = An(q2) and that T 6∼= Dn(q). The latter has
already been done above. Let x be an element in H of prime order r where r
divides q2 − 1. Then we see immediately in the extended Dynkin diagram of T
that E(CG(x))/Z(E(CG(x))) is as indicated in Table 1. We still need to show
that xG is connected.

G ∼= 2An(q). Let Π = {αi | 1 ≤ i ≤ n} so that ρ interchanges αi and αn+1−i.
Let w = (1i)(n + 1 − i, n). Then [ρ, w] = 1 and there is an nw in G such
that nw permutes X1 and Xi and Xn and Xn+1−i. Hence xi := xnw is an
element in 〈xβi , x−βi〉 which commutes with x if 2 ≤ i ≤ n − 1 where xβi(t) =
xαi(t)xατ(i)(t

q) if i 6= n/2 and Xβi(t) = Xαi(t) if i = n/2, see [Ca, 13.6.3].
If n ≥ 5, then 〈CG(x), CG(xi) | 2 ≤ i ≤ n − 1〉 contains the root subgroups

Xβ1 , . . . , Xβj where j = n/2 if n is even and else j = (n − 1)/2 + 1, which
generate G by [Ca1, 13.6.5].

If n = 4, then 〈CG(x), CG(x2)〉 = G by [K].

G ∼= 3D4(q). Number the roots of Π such that α2 is the middle node of the di-
agram. Then M := 〈Xu(t1), X−u(t2), Xα2(t3), X−α2(t4) | t1, . . . , t4 ∈ GF(q)〉 ≤
G is isomorphic to SL3(q). If r divides q − 1, then there is an element g in
M such that x1 := xg is not contained in H and such that [x, x1] = 1. Then
according to [K3D4] 〈CG(x), CG(x1)〉 = G.

Now assume that r divides q + 1. For q = 2 we use the list of maximal
subgroups in [ATLAS]. By 3.5, Γ3 and Γ7 are connected. As G has three 3-
local maximal subgroups, but only two classes of elements of order 3, G has a
connected conjugacy class of elements of order 3 by 3.9. However it is class 3B,
which is not the class we use in case of q > 2.

Let q > 2 and assume that r divides q + 1. Then CG(x) ≥ CH(x) ×
CG(H) ∼= Zq+1 × A1(q3). The list of maximal subgroups [K3D4] yields that
Zq+1 × A1(q3) ∼= CG(x) ≤ H × CG(H). By [LSS] there is a torus normaliser
Nε ∼= Zq3−ε × Zq−ε.D12 in G. As |N |r = |G|r, we may assume that x is in N .
Then by 3.8 N is a subgroup of Hx. The assertion follows, as 〈CG(x), Nε〉 = G.

G ∼= 2E6(q). Here H is contained in a subgroup M of G isomorphic to 2D5(q).
If r divides q− 1 or q+ 1, then there is an element g in M such that x1 := xg is
not contained in H and such that [x, x1] = 1. Then by 3.8 Hx contains beside
〈CG(xh) | h ∈ G〉 the element g. As H × CG(H) is a maximal subgroup of G
by [LSS], it follows that Hx = G, the assertion.

Assume that G ∼= 2An(q) with n = 2 or 3. If q = 2 and n = 2, then G is soluble
and if n = 3, then G ∼= C2(3). Therefore, let q > 2.

Let n = 2 and let r be a prime divisor of (q + 1)/(q + 1, 3). Then M ∼=
Z(q+1)/(q+1,3) ◦ A1(q) is a maximal subgroup of G, see [K]. Let x be a central
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element of order r in M . Then, as the normaliser of the subgroup T ∼= (q +
1)2/(q+ 1, 3) is not contained in M , it follows that xG ∩M contains an element
which is not in 〈x〉. Therefore x satisfies the conditions given in Table 1.

Now let n = 3 and let r be a prime divisor of q + 1. Here there is a
maximal subgroup M ∼= Zq+1 ◦ SU3(q) in G, see [K], and we can use the same
argumentation as in the case n = 2.

Finally assume that the roots of Φ are not all of the same length. Then according
to Theorem 1 Φ is of type F4.

G ∼= 2F4(q). If q = 2 we use this list of maximal subgroups in [ATLAS]. By
3.5 the graph Γ3 is connected. Notice, that Γ5 is not connected, as a Sylow-5-
subgroup is normal in the centraliser of a 5-element.

Let q > 2. It follows that r 6= 3. We can factorise q2 + 1 = (q −
√

2q +
1)(q+

√
2q+ 1). Let ε ∈ {+,−}, such that r is a divisor of q+ ε

√
2q+ 1 and let

x ∈ G be an element of order r with CG(x) ∼= Zq+ε√2q+1× 2B2(q), see [M, 1.3].
Notice that |2F4(2)|r = (q+1)2r = (q+ε

√
2q+1)2r. Then x is also contained in a

maximal subgroup M1
∼= (2B2(q)× 2B2(q)).2. Notice, that the outer involution

of M1 interchanges the two components, as 2B2(q) has no outer automorphism
of order 2. Therefore, M1 ≤ Hx.

There is a subgroup N ∼= (Zq+ε√2q+1×Zq+ε√2q+1).[96] in G, which contains
x but is not contained in M1. Therefore, Hx ≥ G and ΓX is connected for
X = xG.

6 The proof of Theorems 5 and 4

Clearly, we consider only those groups, which have a big connected component
in ΓcalO. We classify the small connected components and we thereby show the
uniqueness of the big connected components (if possible).

The nice fact 3.4 is a basic tool to find the small components. Let C be a
big connected component of ΓO. Then according to that corollary there is a
subset ρ of π(G) such that C consists of all the elements of order s with s in ρ.

6.1 The alternating groups

Let G be an alternating group. If x is an element in G of order r which is in
a small connected component, then there is no 3-cycle which commutes with x.
This yields that r = n − t is a prime and t ≤ 2. Clearly, whenever this holds,
then x is in a small component, which proves the assertion for the alternating
groups.

6.2 The sporadic groups

By Theorem 1, we can exclude M11 and J1. By the centraliser sizes in [ATLAS],
all primes listed in Table 2 are in some π(S) where S runs through the small
connected components of ΓcalO.

It remains to show, that the big connected component(s) contains all other
primes. In Table 5 we give the set of primes π(C) of the orders of elements in
the big connected component together with elements x whose centraliser size
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shows that the elements of G of order r, r in π(C), form indeed a connected
component of ΓO.

This also shows, that the big connected component is unique, apart from
the case G = O′N .

Table 5

Group π(C) x
M12 {3} 3A
M22 {3} 3A
J2 {3, 5} 3A
M23 {3, 5} 3A
HS {3, 5} 3A
J3 {3, 5} 3A
M24 {3, 5, 7} 3A, 3B
McL {3, 5} 3A
He {3, 5, 7} 3A
Ru {3, 5} 3A
Suz {3, 5, 7} 3A
O′N {3, 5} 3A

{7} 7A
Co3 {3, 5, 7} 3A, 3C
Co2 {3, 5} 3A
Fi22 {3, 5, 7} 3A
HN {3, 5, 7} 5A
Ly {3, 5, 7, 11} 3A
Th {3, 5, 7, 13} 3A, 3C
Fi23 {3, 5, 7, 13} 3A
Co1 {3, 5, 7, 11, 13} 3A
J4 {3, 5, 7, 11} 3A
Fi′24 {3, 5, 7, 11, 13} 3A, 3B
B {3, 5, 7, 11, 13} 3A
M {3, 5, 7, 11, 13, 17, 19, 23, 29, 31} 3A, 3C

6.3 Groups of Lie type

In this section G = L(q) is a group of Lie type of rank n defined over the field
GF(q), where q = pa for a prime p. We continue to use the notation introduced
in the previous sections.

Let x be an element in a small component of ΓO of order r. Before we
consider as above first the untwisted and then the twisted groups we study the
groups of small dimension, which escape our general methods. They are the
groups of type A2, 2A2, C2.

If G ∼= 2A2(q), we see as in the proof of Theorem 1 that elements of prime order
whose centraliser is isomorphic with (q + 1)/(q + 1, 3) ◦A1(q) are in a common
connected component C. It follows that also those elements whose order divides
q(q − 1) are contained in C. As the torus of type (q2 − q + 1)/(q + 1, 3) is self
centralising, it follows that all the primes of the small components are precisley
the divisors of (q2 − q + 1)/(q + 1, 3).
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IfG ∼= A2(q), then the torus of size (q2+q+1)/(q−1, 3) is always self centralising.
Hence if dq(r) = 3, then we have no further condition on q.

Let dq(r) ≤ 2. Then x centralises a cyclic subgroup of size (q− 1)/(q− 1, 3).
By 3.9 the conjugacy classes of the elements of odd prime order s, where s
divides (q− 1)/(q− 1, 3), are connected. This and as by Theorem 1 q 6= 2, 4 we
get that q is odd and (q − 1)/(q − 1, 3) a 2-power.

Let G ∼= C2(q). By Theorem 1 q > 2. According to [K] there is a self centralising
torus of size (q2 + 1)/(q − 1, 2), which gives small connected components.

Let y be an element of prime order dividing (q − 1)(q + 1). Then according
to [K] there exist subgroups M and N of type (Sp2(q)×Sp2(q)).2 and O+

4 (q) in
G which contain y. By 3.8 the isomorphic subgroups M and N are contained
in Hy and therefore all prime order elements dividing (q − 1)q(q + 1) are in a
unique big connected component.

Now we study the remaining groups.

Case I. Let G be a non-twisted group of Lie type with root system Φ. Let Π
be a fundamental system of Φ and J a subsystem of Φ such that Φ contains a
subsystem J ×K with |K| ≥ 1. For instance if Φ is of type An, then the set J
of the first n− 2-nodes of Φ and K the last node satisfy this condition.

Moreover, let

PJ = 〈Xj , X−j , Xi | j ∈ J and i ∈ {1, . . . , n} \ J〉.

Then the following holds:

Lemma 6.1 The elements of prime order dividing |PJ | for some J as intro-
duced above are all contained in the same big connected component of ΓO.

Proof: Assume that r divides |PJ |. By assumption PJ commutes with

〈Xk, X−k | k ∈ K〉.

As n ≥ 2, we have 〈Xk, X−k〉 ∼= SL2(q) for every k in K.
If p is odd, then p is in ρ by 3.6. As p divides |SL2(q)|, it follows that r is in

ρ as well in contradiction to the fact that x is not in the big component.
Hence p = 2. Then according to Theorem 3 there is an element of order s in

G where s is an odd prime dividing q2 − 1 such that its conjugacy class is con-
nected. This means s ∈ ρ. As s divides |SL2(q)|, we get the same contradiction
as in the last paragraph. Thus r does not divide |PJ |. 2

By considering the order of G and of its parabolic subgroups we are now
able to determine r in a case by case analysis.

G ∼= An(q), n ≥ 3. Here 6.1 implies dq(r) = n or n+ 1.
Assume dq(r) = n + 1. If n + 1 is a prime, a torus of size (qn+1 − 1)/[(q −

1)(qn+1 − 1, n+ 1)] is self centralising and gives a small connected component.
If n+ 1 = a1 · a2 with ai 6= 1, then qai − 1 divides qn+1 − 1. It follows, as r

does not divide |An−2(q)| by 6.1 and as ai ≤ n− 1, that

m := (qai − 1)/[(q − 1)(qn+1 − 1, n+ 1)]
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is a 2-power. By Theorem 6 there is either a Zsigmondy prime s with s = dq(ai)
or ai = 2. If there is such a prime, then s divides ai − 1. As m is a power of
2, the latter case implies that s divides n+ 1 as well, which is not possible. So
a1 = a2 = 2, n+ 1 = 4 and q + 1 is a 2-power.

Now assume dq(r) = n. Then the naturalG-module V splits under the action
of x into the direct sum V = U ⊕W of a 1-dimensional and an n-dimensional
subspace and CG(x) ∼= Z(qn−1)/(q−1,n+1). This implies that (q−1)/(q−1, n+1)
is a power of 2. If n is not a prime, then by the same argumentation as above,
n = 4 and q2−11 is a 2-power, which yields q = 3. Then (qn−1)/(q−1, n+1) =
34 − 1 = 24 · 5. If n is a prime and (q − 1)/(q − 1, n+ 1) a 2-power, then again
the odd order elements in CG(x) form a small connected component in ΓO.

G ∼= Bn(q), n ≥ 3, q odd. By Lemma 6.1 and as there are subgroups in G
isomorphic to O3(q) ⊥ O+

2n−2(q) or O3(q) ⊥ O−2n−2(q) it follows that dq(r) = n
or 2n.

Assume dq(r) = n. Then, by order reasons, x fixes a totally isotropic n-space
of the natural G-module V . It follows that CG(x) ∼= Z(qn−1)/2. Hence n is a
prime and q − 1 a 2-power.

Assume dq(r) = 2n. Then x fixes an 2n-dimensional subspace of −-type of
the natural G-module V and CG(x) is cyclic of order qn+1/2. According to 6.1
qn+ 1 is not divisible by some odd number which divides q2i− 1 with i ≤ n− 2.
By this fact and as, if a is odd qab + 1 = (qb + 1)(q(a−1)b − q(a−2)b ± +1), we
get that either n is a 2-power or that n is a prime and q + 1 a 2-power, see the
proof of 2.2.

G ∼= Cn(q), n ≥ 3. By 6.1 and as there is a subgroup isomorphic to Sp2(q) ⊥
Sp2n−2(q), we have dq(r) = n or 2n.

Assume first dq(r) = n. Then n is odd, since else r | |Spn(q)| in contradiction
to 6.1. It follows that x fixes a totally isotropic n-subspace of the natural G-
module and that CG(x) is cyclic of order (qn − 1)/(2, q − 1). Hence it follows
that n is a prime and q − 1 a 2-power.

Now let dq(r) = 2n. Then CG(x) = (qn + 1)/(q − 1, 2) as can be seen in the
subgroup C2(qn). Hence n is a 2-power or an odd prime and q+ 1 is a 2-power.

G ∼= Dn(q) By 6.1 and as there is a subgroup M isomorphic to O−2 (q) ⊥
O−2n−2(q) in G as well as if q is odd, one isomorphic to O3(q) ⊥ O2n−3(q) – recall
O−2 (q) ∼= D2(q+1) and O3(q) ∼= L2(q) – the order r divides (qn− 1)(q2(n−1)− 1).
If n is even, then (qn−1) divides the order of Dn−2(q). So by 6.1 r | (q2(n−1)−1).

Suppose dq(r) = n− 1. There is a torus of type qn−1 − 1 in a subgroup M2

of type GLn(q).2, see 4.2.7 of [KL]. If q − 1 is not a 2-power, then Z(F ∗(M2))
contains elements of odd order and x is in the big connected component. If
(q− 1) is a 2-power, then x is contained in a small connected component if and
only if n− 1 is a prime.

Suppose dq(r) = 2(n − 1). There is a torus of type qn−1 + 1 contained in
a subgroup of type GUn(q) in class C3 in G, see Proposition 4.3.18 of [KL]. If
q + 1 is not a 2-power, Z(F ∗(M3)) contains elements of odd order and x is in
the big connected component. We get that q+1 is a 2-power and n−1 a prime.

Let n be odd.
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Suppose dq(r) = n. There is torus of type qn − 1 in a subgroup of type
GLn(q).2 in class C2, see Proposition 4.2.7 of [KL]. It follows that q − 1 is a
2-power and n a prime.

Suppose dq(r) = n− 1. If q is odd, then qn−1 − 1 divides |Ωn(q)| and if q is
even, then qn−1 − 1 divides |Ω−n+1(q)|. This contradicts that x is an element of
order r which is contained in a small connected component.

Suppose dq(r) = 2(n − 1). Then because of the subgroup M , (q + 1) is a
power of 2. We claim that n− 1 is 2-power as well. Let n− 1 = a · b with a > 1
a 2-power and b odd. Then there is a torus of type qn−1 + 1 in a subgroup M2

of type GUb(qa), which is a subgroup of O−2 (q) ⊥ O−2n−2(q) ≤ G. If b = 1, then
the torus is centralised by a 2-group of size q + 1. If b 6= 1, then Z(F ∗(M2))
contains elements of odd order, see 4.3.18 of [KL], which yields a contradiction.

G ∼= E6(q). Here we get dq(r) ∈ {8, 9, 12}. As there is a subgroup of type
3D4(q) ◦ q

2+q+1
(q−1,3) in G, see [LSS], in fact dq(r) 6= 12.

Assume dq(r) = 8. Then, again by the list of subgroups of G given in [LSS],
(q + 1)(q − 1)/(3, q − 1) is a 2-power, which yields q = 3 or 7 by Lemma 2.2.

Assume dq(r) = 9. Then there is a self-centralising torus of size q6 + q3 + 1.
So x is in a small component.

G ∼= E7(q). By [LSS] and 6.1 dq(r) ∈ {7, 9, 14, 18}. A subgroup of type A1(q7),
see [LSS] gives small connected components for dq(r) ∈ {7, 14}, if q − 1 resp.
q + 1 is a 2-power. If dq(r) = 9 or 18, then, as there are subgroups isomorphic
to E6(q) ◦ (q− 1) and 2E6(q) ◦ (q+ 1) in G, it follows that q− 1 resp. q+ 1 is a
2-power.

G ∼= E8(q). Here, as there is a subgroup isomorphic to SL2(q)◦E7(q), see [LSS],
dq(r) ∈ {15, 20, 24, 30}.

Let dq(r) = 20. By [LSS] there exists a subgroup M in G of type SU5(q2),
which contains a torus isomorphic to q10+1

q2+1 . As M has a nontrivial center of
odd order, if 5 | q2 + 1, it follows that x is in a small component iff 5 does not
divide q2 + 1.

In G there are self centralising tori of size Φd(q) for d = 15, 24, 30, see [LSS],
which implies that Table 3 holds for G.

G ∼= F4(q). By [LSS] dq(r) ∈ {8, 12}. According to the list of maximal sub-
groups which contain all centralisers of elements in G given in [CLSS] we get
that these conditions indeed give small connected components.

G ∼= G2(q). By Theorem 1 q > 2 and by [LSS] dq(r) ∈ {3, 6}. By [LSS] there
exist subgroups of type SL3(q) and SU3(q) in G, which have a nontrivial center,
if 3 | q − 1 or 3 | q + 1, respectively. This together with the list given in [CLSS]
shows the assertion for dq(r) = 3 or 6, respectively.

Case II. Let G be a twisted group of Lie type. Here again the analogous version
of 6.1 holds. Precisely in the same way as for the untwisted groups we get the
conditions on q, n and r as given in Table 4 (we quote [Ca1], [K] und [LSS]).
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